lambda matrix - definição. O que é lambda matrix. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é lambda matrix - definição

MATRIX WHOSE ENTRIES ARE POLYNOMIALS
Characteristic matrix; Λ-matrix

Polynomial matrix         
In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.
Gnome Lambda         
  • Oberursel U.III, a copy of the 14-cylinder Gnome Lambda-Lambda
  • reason=The [[Sopwith Tabloid]] article says it was produced only with Monospaupe engines. Is Lambda an alternate name for these? Or maybe it is a customization specific only to this replica?}} engine.
ROTARY PISTON AIRCRAFT ENGINE
Gnome Lambda-Lambda; Gnome 7 Lambda; Gnome 14 Lambda-Lambda.; Oberursel U.0; Oberursel U.III; Gnome 14 Lambda-Lambda; Gnome Lambda Lambda; Gnome Λ80 Lambda; Gnome ΛΛ160 Lambda-Lambda; Gnôme 14 Lambda-Lambda; Motorenfabrik Oberursel U.0
The Gnome 7 Lambda was a French designed, seven-cylinder, air-cooled rotary aero engine that was produced under license in Britain and Germany. Powering several World War I-era aircraft types it was claimed to produce from its capacity of although recorded figures are lower.
MATRIX MATH         
  • The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram.
  • orientation]], since it turns the counterclockwise orientation of the vectors to a clockwise one.
  • 150px
  • 150px
  • 150px
  • An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks.
  • An undirected graph with adjacency matrix:
<math display="block">\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.</math>
  • Two different Markov chains. The chart depicts the number of particles (of a total of 1000) in state "2". Both limiting values can be determined from the transition matrices, which are given by <math>
\begin{bmatrix}
 0.7 & 0\\
 0.3 & 1
\end{bmatrix}</math> (red) and <math>
\begin{bmatrix}
 0.7 & 0.2\\
 0.3 & 0.8
\end{bmatrix}</math> (black).
  • Schematic depiction of the matrix product '''AB''' of two matrices '''A''' and '''B'''.
  • 125px
  • indefinite]].
  • 125px
  • 150px
  • 175px
RECTANGULAR ARRAY OF NUMBERS, SYMBOLS, OR EXPRESSIONS, ARRANGED IN ROWS AND COLUMNS
Matrix (Mathematics); Matrix (math); Submatrix; Matrix theory; Matrix (maths); Submatrices; Matrix Theory and Linear Algebra; Infinite matrix; Square (matrix); Matrix operation; Square submatrix; Matrix(mathematics); Real matrix; Matrix math; Matrix index; Equal matrix; Matrix equation; Matrix (computer science); Matrix notation; Empty matrix; Real matrices; Principal submatrix; Array (mathematics); Matrix power; Complex matrix; Complex matrices; Applications of matrices; Rectangular matrix; Uniform matrix
<language> An early system on the UNIVAC I or II. [Listed in CACM 2(5):1959-05-16]. (1997-02-27)

Wikipédia

Polynomial matrix

In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.

A univariate polynomial matrix P of degree p is defined as:

P = n = 0 p A ( n ) x n = A ( 0 ) + A ( 1 ) x + A ( 2 ) x 2 + + A ( p ) x p {\displaystyle P=\sum _{n=0}^{p}A(n)x^{n}=A(0)+A(1)x+A(2)x^{2}+\cdots +A(p)x^{p}}

where A ( i ) {\displaystyle A(i)} denotes a matrix of constant coefficients, and A ( p ) {\displaystyle A(p)} is non-zero. An example 3×3 polynomial matrix, degree 2:

P = ( 1 x 2 x 0 2 x 2 3 x + 2 x 2 1 0 ) = ( 1 0 0 0 0 2 2 1 0 ) + ( 0 0 1 0 2 0 3 0 0 ) x + ( 0 1 0 0 0 0 0 1 0 ) x 2 . {\displaystyle P={\begin{pmatrix}1&x^{2}&x\\0&2x&2\\3x+2&x^{2}-1&0\end{pmatrix}}={\begin{pmatrix}1&0&0\\0&0&2\\2&-1&0\end{pmatrix}}+{\begin{pmatrix}0&0&1\\0&2&0\\3&0&0\end{pmatrix}}x+{\begin{pmatrix}0&1&0\\0&0&0\\0&1&0\end{pmatrix}}x^{2}.}

We can express this by saying that for a ring R, the rings M n ( R [ X ] ) {\displaystyle M_{n}(R[X])} and ( M n ( R ) ) [ X ] {\displaystyle (M_{n}(R))[X]} are isomorphic.